References

Ball, R. G., James, B. R., Mahajan, D. \& Trotter, J. (1981). Inorg. Chem. 20, 254-261.
Ball, R. G. \& Trotter, J. (1981). Inorg. Chem. 20, 261-265.
Blystone, S. L. (1989). Chem. Rev. 89, 1663-1679.
Cunningham, A. F. Jr \& Kündig, E. P. (1988). J. Org. Chem. 53, 1823-1825.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kagan, H. \& Dang, T. P. (1972). J. Am. Chem. Soc. 94, 6429-6433.
Nemoto, H., Takamatsu, S. \& Yamamoto, Y. (1991). J. Org. Chem. 56, 1321-1322.
Noyori, R. (1989). Chem. Soc. Rev. 18, 187-208.
Ojima, I. (1993). Editor. Catalytic Asymmetric Synthesis. New York: VCH.
Ojima, I., Clos, N. \& Bastos, C. (1989). Tetrahedron, 45, 6901-6939.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1995). PLATON. Molecular Geometry Program. Version of July 1995. University of Utrecht, The Netherlands.

Acta Cryst. (1998). C54, 266-267

2,7-Dichlorothianthrene

Ning-Leh Chang, Stewart N. Thomas, Vincent M.
Lynch and Stanley H. Simonsen \dagger
Department of Chemistry \& Biochemistry, University of Texas at Austin, Austin, TX 78712, USA. E-mail: vmlynch@mail.utexas.edu
(Received 23 April 1997; accepted 10 September 1997)

Abstract

The crystal structure of the title compound, $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~S}_{2}$, has been determined. The dihedral angle for 2,7 -dichlorothianthrene is $132.55(4)^{\circ}$. This value is similar to that found in other 2,7 -substituted thianthrenes and also the parent thianthrene.

\section*{Comment}

This structural investigation was performed as a result of our interest in the effect that substitutions in or on the aromatic rings of thianthrene have on the dihedral angle of the two planes in the title compound, (I), which are defined by one aromatic ring and the two S atoms (Larson et al., 1984).

\dagger Deceased, 29 July 1996.

(I)

On comparison of the dihedral angles of 2,7-dichlorothianthrene, 2,7-dimethylthianthrene (Weakley, 1982), perfluorothianthrene (Rainville et al., 1980) and thianthrene itself (Larson et al., 1984), it is evident that the differences are small. The observed dihedral angle is $132.55(4)^{\circ}$ for 2,7-dichlorothianthrene, 131.1 (1) ${ }^{\circ}$ for 2,7-dimethylthianthrene, $132.0(1)^{\circ}$ for perfluorothianthrene and 127.14 (3) ${ }^{\circ}$ for thianthrene. These differences could be the result of the 2,7 -disubstitution, the inductive effects of halogens or packing considerations. Despite the small magnitude of these differences, some trends can be observed when comparing these compounds. The $\mathrm{S} \cdots \mathrm{S}$ distance increases to 3.226 (1) \AA in 2,7 -dichlorothianthrene compared with 3.193 (1) \AA in thianthrene. The $\mathrm{C}-\mathrm{S}-\mathrm{C}$ angles in the central ring increase from 101.31 (8) and $101.05(8)^{\circ}$ in 2,7-disubstitution to 100.4 (1) and $99.8(1)^{\circ}$ in thianthrene. These effects seem to be geometrically related to the flattening (increasing dihedral angle) of the thianthrene molecule when 2,7-disubstituted.

Fig. 1. View of the title compound showing the atom-labeling scheme. Displacement ellipsoids are scaled to the 50% probability level. H atoms are drawn to an arbitrary scale.

Fig. 2. Packing diagram of the title compound.

Experimental

The title compound was synthesized by Stewart N. Thomas under the supervision of Professor A. L. Ternay Jr.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~S}_{2}$
$M_{r}=285.19$
Monoclinic
I2/a
$a=21.311(4) \AA$
$b=3.9080(8) \AA$
$c=27.581(6) \AA$
$\beta=97.49(3)^{\circ}$
$V=2277.4(8) \AA^{3}$
$Z=8$
$D_{x}=1.664 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Syntex $P 2_{1}$ diffractometer ω scans
Absorption correction: analytical from crystal shape
$T_{\text {min }}=0.82, T_{\text {max }}=0.91$
2598 measured reflections 2598 independent reflections

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
Cell parameters from 45 reflections
$\theta=21.6-29.0^{\circ}$
$\mu=0.900 \mathrm{~mm}^{-1}$
$T=163$ (2) K
Needle
$0.25 \times 0.16 \times 0.10 \mathrm{~mm}$ Colorless

2146 reflections with

$$
I>2 \sigma(I)
$$

$\theta_{\text {max }}=27.51^{\circ}$
$h=-26 \rightarrow 27$
$k=-4 \rightarrow 5$
$l=-35 \rightarrow 7$
4 standard reflections every 96 reflections intensity decay: $<1 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.085$
$S=1.05$
2597 reflections
169 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.035 P)^{2}\right]$

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.39 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}$
Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

The $\mathrm{C}-\mathrm{H}$ distances range from 0.91 (2) to 0.95 (2) \AA, while the $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angles range from $118.4(1)$ to $121.6(1)^{\circ}$. The $U_{\text {iso }}$ values of the H atoms vary from 0.0275 (5) to 0.046 (7) \AA^{2}.

Data collection: Syntex $P 2_{1}$ software. Cell refinement: LSCEL (Harlow, 1975). Data reduction: INCON (Riley \& Davis, 1976). Program(s) used to solve structure: SHELXL93 (Sheldrick, 1993). Program(s) used to refine structure: SHELXL93. Molecular graphics: SHELXL93. Software used to prepare material for publication: SHELXL93.

The authors thank Dr Raymond E. Davis for helpful comments. Funding for this work was provided by the Robert A. Welch Foundation, Grant No. F-0017.

[^0]
References

Harlow, R. (1975). LSCEL. Program for Cell Refinement. University of Texas at Austin, Austin, Texas.
Larson, S. B., Simonsen, S. H., Martin, G. E., Smith, K. \& PuigTorres, S. (1984). Acta Cryst. C40, 103-106.
Rainville, D., Zingaro, R. A. \& Meyers, E. A. (1980). Cryst. Struct. Comтии. 9, 909-915.
Riley, P. E. \& Davis, R. E. (1976). Acta Cryst. B32, 381-386.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Weakley, T. J. R. (1982). Cryst. Struct. Commun. 11, 681-684.

Acta Cryst. (1998). C54, 267-269

(S),(E)-5-Methoxycarbonyl-3-triphenyl-methylaminohex-4-en-4-olide \dagger

Vassllios Nastopoulos, ${ }^{a}$ Constantinos
Athanassopoulos, ${ }^{a}$ Dionissios Papaioannou, ${ }^{a}$
George W. Francis ${ }^{b}$ and Constantin Kavounis ${ }^{c}$
${ }^{a}$ Department of Chemistry, University of Patras, Gr-265 00 Patras, Greece, ${ }^{a}$ Department of Chemistry, University of Bergen, N-5007 Bergen, Norway and 'Department of Physics, University of Thessaloniki, Gr-540 06 Thessaloniki, Greece. E-mail: nastopoulos@upatras.gr

(Received 9 April 1997; accepted 18 June 1997)

Abstract

The title compound, $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4}$, is the minor product of the Wittig reaction of (S)- N -triphenylmethylaspartic anhydride with the stabilized ylide $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}(\mathrm{Me}) \mathrm{CO}_{2} \mathrm{Me}$. The crystal structure determination unambiguously shows that this product is not the originally proposed Z isomer of the major product (S), (E)-5-methoxycarbonyl-2-triphenylmethylaminohex-4-en-4-olide, but the alternative α-adduct, also with an E configuration at the $\mathrm{C} 4=\mathrm{C} 5$ double bond.

Comment

We have recently shown that the readily available (S)-N-triphenylmethylaspartic anhydride, (1), can be applied in the asymmetric synthesis of amino acid and peptide derivatives through its reactions with a variety of nucleophiles (Athanassopoulos et al., 1995). In particular, the Wittig reaction of anhydride (1) with the stabilized ylide $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}(\mathrm{Me}) \mathrm{CO}_{2} \mathrm{Me}$ produced a mixture of two isomeric enol-lactones in the ratio 6:1.7.

[^1]
[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1346). Services for accessing these data are described at the back of the journal.

[^1]: \dagger Alternative name: methyl 2-[5-oxo-3-(triphenylmethylamino)tetra-hydrofuran-2-ylidene]propanoate.

